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Abstract
Introduction

Pneumonia remains a significant cause of morbidity and mortality in children globally. Chest radiographs
(CXRs) are widely used to diagnose pediatric pneumonia; however, distinguishing between bacterial and
viral etiologies on imaging is a diagnostically challenging task. Large language models (LLMs), particularly
those integrated with vision capabilities, have shown promise in preliminary studies for interpreting CXR
findings. However, the diagnostic performance of general-purpose LLMs without specialized medical
training or add-ons remains poorly understood. This study examined whether such LLMs could
independently and reliably distinguish between bacterial, viral, and normal CXRs in pediatric patients.

Methods

We evaluated four publicly available LLMs, such as ChatGPT 03, Claude 3.7 Sonnet, Gemini 2.5 Pro, and Grok
3, on a dataset of 44 pediatric CXRs confirmed by human readers to show bacterial pneumonia (n = 17), viral
pneumonia (n = 13), or no abnormality (n = 14). Each image was analyzed twice by each LLM using a
standardized prompt, resulting in a total of eight readings per image. Diagnostic accuracy was assessed
relative to human expert consensus. Internal consistency was measured by comparing repeated
interpretations. A prespecified adaptive stopping rule was employed based on performance futility criteria.
Sample size calculations and statistical analyses were conducted using G*Power.

Results

Across all models and CXR types, the average diagnostic accuracy was 31%, consistent with chance-level
performance in a three-choice classification task. Accuracy was highest for viral pneumonia (54%) and
lowest for normal CXRs (18%). Internal consistency ranged from 46% to 71% across models, indicating
unreliable performance. Concordance with human expert interpretation did not exceed 49% for any of the
models. Futility criteria were met after 44 cases, prompting early termination of data collection.

Conclusion

General-purpose LLMs currently available to the public are not reliable diagnostic tools for pediatric
pneumonia on chest radiographs. Their accuracy is low, particularly in ruling out disease, and their
responses lack internal consistency. These findings highlight the risks associated with deploying such
models in unsupervised clinical or consumer-facing settings. Future research should focus on purpose-built
radiologic Al tools trained on diverse, clinically representative datasets and integrated with clinician
oversight to ensure the safe and effective use of these tools.

Categories: Radiology, Internal Medicine, Pediatrics
Keywords: ai in medical imaging, chatgpt, chest-radiography, diagnostic accuracy of ai, large language models,
pediatric pneumonia

Introduction

Pneumonia is a leading cause of morbidity and mortality in pediatric populations worldwide, making prompt
diagnosis essential [1]. Chest radiographs (CXRs) have been effective in ruling out pneumonia in children,
which avoids unnecessary treatment with antibiotic therapy [2]. However, distinguishing between bacterial
and viral pneumonia on chest X-rays has proven to be highly challenging, leading some studies to
recommend that all children with radiologically confirmed pneumonia receive antibiotic treatment [3]. Even
with these findings, clinicians continue to rely on CXRs to differentiate between bacterial and viral
pneumonia, thereby guiding their treatment [4]. Since CXRs have a significant impact on the clinical
management of pneumonia, it is crucial to enhance diagnostic accuracy.
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Large language models (LLMs) like ChatGPT, with an “X-ray interpreter” add-on, have shown potential in
identifying pathologies such as atelectasis, effusion, emphysema, pneumothorax, pneumonia, and masses
on CXR [5]. ChatGPT with the add-on yielded varying results in identifying each pathology, but pneumonia
showed the highest pathology accuracy at 91.0%, with a sensitivity of 76.2% and a specificity of 98.7% [5].
There has even been the development of radiology-dedicated LLMs, such as CXR-LLaVA, which have
outperformed ChatGPT-4-vision and Gemini-Pro-Vision [6]. There will inevitably be an increase in the use of
LLMs to help identify pathologies on CXRs. On October 29, 2024, even Elon Musk encouraged users to
submit medical images to Grok for analysis [7]. Both clinicians and patients will increasingly have access to
tools that can assist in diagnosis or validate existing findings. This highlights the importance of
understanding the capabilities of Al models as well as the differences between them.

Independent evidence shows that general-purpose LLMs struggle with radiologic anatomy; in Part 1
radiologic-anatomy examinations for the Fellowship of the Royal College of Radiologists, ChatGPT-4
performed poorly, indicating significant limitations in recognizing normal radiological anatomy [8]. While
prior studies have shown promising results using LLMs enhanced with specialized add-ons or radiology-
specific tools, we aim to assess whether baseline, general-purpose models can independently provide
valuable diagnostic insights without the need for additional modifications or integrations. To evaluate the
efficacy of LLMs in diagnosing pneumonia from CXRs, we evaluated four leading LLMs, such as ChatGPT 03,
Claude 3.7 Sonnet, Gemini 2.5 Pro, and Grok 3-for their ability to analyze pediatric CXRs categorized as
showing bacterial pneumonia, viral pneumonia, or no abnormalities. The popularity of these LLMs increases
the likelihood that patients could upload their CXRs to have a second opinion on their diagnoses. The LLMs
will be evaluated for the accuracy of their diagnoses compared to those of human readers and their
consistency when shown the exact CXR multiple times.

This study utilizes images from a public domain dataset that includes pediatric CXRs, which either display
bacterial pneumonia, viral pneumonia, or a normal CXR [9,10]. These CXRs were obtained from retrospective
cohorts of pediatric patients aged one to five years from Guangzhou Women and Children’s Medical Center
in Guangzhou, China. These CXRs were interpreted to confirm a diagnosis and make treatment referrals [10].

The objective of this study was to evaluate the diagnostic accuracy and consistency of four leading general-
purpose LLMs in classifying pediatric chest radiographs as bacterial pneumonia, viral pneumonia, or normal.
The results of this study can help inform clinicians on how LLMs can be utilized or improved to enhance
diagnostic accuracy. Additionally, patients should be aware of the potential for misdiagnosis when uploading
their imaging and of which LLMs are the most consistent.

Materials And Methods
Study population

From a public dataset of 5,856 CXRs, 44 were randomly sampled and analyzed prior to meeting the adaptive
futility boundary. Inclusion criteria, including patients aged one to five years, anterior-posterior image view,
sufficient quality, and expert-confirmed diagnosis, were predefined by the public domain dataset curators.
These images were evenly distributed across three diagnostic categories: bacterial pneumonia (n = 17), viral
pneumonia (n = 13), and normal (n = 14). Each image was independently analyzed twice by four general-
purpose LLMs, resulting in 352 total diagnostic interpretations (Figure 7). As each CXR was interpreted eight
times, with non-unanimous predictions being common, we did not assign a single predicted diagnosis per
image and did not compute standard cross-tabulation matrices. All models received the same standardized
prompt, without prefix, suffix, or role assignment, consistent with prior studies demonstrating that prompt
structure significantly affects diagnostic output from LLMs [8]. The full prompt was: “Look at this image
carefully. Analyze it thoroughly. This is a CXR of a pediatric patient with suspected pneumonia. Based on
the CXR, is the pneumonia bacterial or viral? Or is the CXR normal? Respond in one word: bacterial, viral, or
normal.”
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Public pediatric chest radiograph dataset identified (n =
5856). Source: Guangzhou Women and Children's
Medical Center; public-domain release

Random sequential sampling under pre-specified adaptive
design (images selected one at a time; no stratification)

Final sample analyzed before futility boundary was reached (n
= 44) selected

 Bacterial pneumonia: 17

« Viral pneumonia: 13

* Normal: 14

Diagnostic readings

» Four general-purpose large language models

» Two trials per image

Total readings = 44 x 4 x 2 = 352

Not sampled due to early stopping: remaining available images
(n =5812)

FIGURE 1: Standards for reporting diagnostic accuracy studies flow
diagram

A public pediatric chest radiograph dataset (n = 5,856) was identified. Images were randomly sampled
sequentially under a prespecified adaptive design, and the analysis stopped when the futility boundary was
crossed after 44 images (bacterial 17, viral 13, and normal 14). Each analyzed image was evaluated twice by four
general-purpose large language models, yielding 352 total readings. The remaining available images (n = 5,812)
were not sampled due to early stopping.

Statistical analysis

Sample size determinations were carried out in G*Power, version 3.1.9.7 (Heinrich-Heine-Universitat
Diisseldorf, Diisseldorf, Germany) [11]. Three analyses yielded N = 122 for test-retest consistency (Bowker’s
marginal-homogeneity x?; df = 3; w =.30; a = .05; 1-B = .80), N = 48 for AI-human concordance (x> goodness-
of-fit; df = 1; w = .408; a = .05; 1-B = .80), and N = 24 for comparing accuracy across the four programs via
repeated measures ANOVA (f =.25; a =.05; 1-B = .80; measurements = 4; p = .50; € = 1). The largest required
sample size (N = 122) was chosen to ensure adequate power for all planned analyses. An adaptive trial design
was employed, with one interim analysis scheduled after approximately one-third of the target sample had
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been evaluated [12,13]. Prespecified futility criteria were defined such that if the Al models' strict accuracy
on the interim cohort remained within 5% of chance (i.e., 33%) and there was a low likelihood of achieving a
clinically meaningful accuracy (>50%) with further data, then data collection would be stopped early. This
approach minimized unnecessary evaluation of additional CXRs once evidence of futility was established.
Although model responses were required to conform to a single-word format (“bacterial,” “viral,” or
“normal”), no responses were excluded due to formatting issues; all outputs in the final dataset were
interpretable and required no post hoc disambiguation. Although diagnostic categories were not perfectly
balanced, case selection was based on image quality, patient age, and confirmed diagnosis rather than
predetermined quotas, preserving the real-world nature of the dataset. Confidence intervals for diagnostic
accuracy were calculated using the Wilson score interval without continuity correction [14].

Compliance with reporting standards

This study adhered to the Standards for Reporting Diagnostic Accuracy Studies (STARD 2015) guidelines for
reporting diagnostic accuracy research involving retrospective imaging data [15]. A flow diagram and
structured reporting elements were used to enhance transparency and reproducibility.

Results

A total of 44 pediatric chest radiographs were analyzed between May and June 2025, after which the adaptive
trial’s prespecified futility criteria were met, and data collection was stopped early.

Overall diagnostic accuracy

Across all four Al engines, the strict accuracy - defined as both model responses per image matching the
human reference standard - averaged 31%, closely matching random-guess performance for a three-

category task (chance = 33%). Individual model accuracies were 23% for Grok 3 (95% confidence interval (CI):

15%-33%), 27% for ChatGPT 03 (95% CI: 19%-37%), 45% for Claude 3.7 Sonnet (95% CI: 35%-55%), and 30%
for Gemini 2.5 Pro (95% CI: 21%-40%; all Cls calculated using Wilson score method). One-way repeated
measures ANOVA revealed no significant difference in accuracy between models (F(3, 129) = 2.178,p =
0.093). A statistical comparison of accuracies revealed significant differences between viral and normal
pneumonia (z = 5.52, p < 0.001) and between viral and bacterial pneumonia (z = 4.46, p < 0.001). In contrast,
the difference between bacterial and normal pneumonia was not significant (z = 1.39, p = 0.165).

Al-human concordance

Concordance with human radiologists was uniformly poor, with none of the models achieving better than
49% agreement and an overall average of 31%. x? goodness-of-fit testing confirmed that this concordance
did not differ significantly from chance performance (x> = 0.819, df = 1, p = 0.366). The overall accuracy was
low at 31% with a 95% CI of 25%-38%. For normal CXR findings, the accuracy was 16% (8%-28%); for viral,
54% (40%-67%); and for bacterial, 27% (17%-37%) (Table I).

Accuracy (95% CI) Interpretation

16% (8%—28%)
54% (40%-67%)
27% (17%-37%)

31% (25%-38%)

Substantially below chance; suggests unreliable performance in ruling out pathology
Slightly above chance; limited discriminative capability
Below chance; inconsistent differentiation from other etiologies

Within the range of random chance

TABLE 1: Accuracy of LLMs by chest radiograph (CXR) type

Accuracies of LLMs are given with 95% Cls. Accuracy refers to strict agreement between model output and human-confirmed reference standard.

Internal consistency

Test-retest consistency was evaluated using Bowker's marginal-homogeneity test (x> = 2.622, df =3, p =
0.454). While this indicated no systematic bias in the direction of disagreements between first and second
readings, overall agreement was only 60.2%, demonstrating substantial inconsistency in model responses.
Individual model consistency ranged from 46% to 71%, which is insufficiently reliable for clinical use.

Adaptive stopping

Interim analyses demonstrated that even under overly optimistic performance assumptions, final accuracy
could not have risen appreciably above chance levels. Accordingly, the adaptive design’s stopping rule for
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futility was satisfied at n = 44, obviating the need to reach the initially planned N = 122 evaluations.

These findings indicate that baseline, general-purpose LLMs in their current form perform at chance levels
for differentiating bacterial versus viral pneumonia (or normal) on pediatric CXRs and lack sufficient
consistency to be considered reliable diagnostic aids.

Discussion

The results of this study indicate a limited concordance between LLMs and human readers when interpreting
CXRs. In addition, the LLMs showed low consistency in their readings when presented with the same CXR a
second time. In a study by Yao et al., pediatric CXRs with confirmed pneumonia diagnoses were evaluated by
four radiologists to assess their diagnostic performance [16]. The four radiologists (two attendings and two
residents) in this study achieved a recall (sensitivity) range of 0.81-0.95 for normal CXRs, 0.49-0.71 for
bacterial pneumonia, and 0.15-0.21 for viral pneumonia [16]. In contrast, all four LLMs evaluated in this
study - general-purpose models without medical fine-tuning or domain-specific training - demonstrated low
accuracy, even when identifying normal CXRs.

Their inconsistent responses when asked to reassess the same images suggest a lack of diagnostic confidence
and stability. This variability raises concerns about susceptibility to bias, particularly if users repeatedly
prompt the model until it produces an answer that aligns with their preconceived diagnosis. Given the
models’ poor concordance with human readers and lack of internal consistency, there is a significant risk in
relying on them independently, especially by users who may not fully understand the limitations and
appropriate use of these tools.

The notably higher accuracy for viral pneumonia (54%) compared with bacterial pneumonia (26%) and
normal CXRs (18%) suggests that these general-purpose LLMs may have differential pattern recognition
capabilities across diagnostic categories. Viral pneumonia typically presents with bilateral, diffuse, or
interstitial patterns that may be more readily identifiable by vision-enabled models compared to the focal
consolidations characteristic of bacterial pneumonia. The inferior performance in identifying normal CXRs
(18%) is concerning from a clinical perspective, as this represents the models' inability to rule out disease - a
critical function in screening and diagnostic workflows. This pattern may reflect training data biases, where
viral pneumonia images might be more prevalent in publicly available datasets, or it could indicate that the
diffuse, bilateral patterns of viral disease align better with the pattern recognition algorithms underlying
these models. The low accuracy for normal CXRs also suggests that these models struggle with the nuanced
task of distinguishing subtle normal variations from pathology. This task requires sophisticated clinical
judgment developed through extensive training and experience by human radiologists. These findings
highlight the complexity of medical image interpretation and underscore the need for purpose-built,
medically trained Al systems to achieve reliable diagnostic performance.

Since these publicly available LLMs cannot read as accurately as human radiologists, they would not provide
much value if used alone. Al has been proposed as a potential solution to enhance access to medical imaging
in low- and middle-income countries [17]. Many physicians ordering imaging may be tempted to use publicly
available LLMs because they are easily accessible, have minimal barriers to use, and can quickly yield results.
However, the LLMs used in this study are not suitable for practical or clinical use on their own, as their low
accuracy significantly limits their reliability and effectiveness. Even if these LLMs are used with radiologist
supervision, previous studies have shown that Al predictions with significant errors can lead to adverse
treatment effects, with radiologists struggling to differentiate accurate and inaccurate outputs [18]. This
highlights the need for accurate Al models that are specifically trained in medical imaging. Further research
is needed to determine the most effective way to integrate Al into radiologists' workflows, enhancing
diagnostic accuracy and efficiency while minimizing the addition of complexity or burden to their work.

While radiologists will be aware of the limitations of LLMs in interpreting medical imaging, the public will
still be interested in using easily accessible LLMs to obtain a second opinion on their diagnoses. Many
electronic medical record systems now grant patients immediate access to their imaging and lab results,
often before a physician has reviewed them. Increasingly, patients prefer this real-time release of
information, even if it has not yet been interpreted by a healthcare practitioner [19]. When patients gain
access to their CXRs before a physician interprets them, many may experience anxiety and seek early
interpretations from publicly available LLMs. This practice is concerning because LLMs could heighten
patient distress with false positives or provide a false sense of reassurance in the case of false negatives.
Since many patients are unaware of the limitations and low diagnostic reliability of AI, LLM-generated
results may cause them to question or distrust the radiologist’s interpretation that they later receive.

The potential for misdiagnosis, misplaced trust, and unclear accountability demonstrates why these LLMs
are not ready for patient care. Overreliance on Al tools for interpreting chest X-rays may give clinicians a
false sense of diagnostic certainty, particularly for conditions such as bacterial pneumonia. This could lead
to shortcuts in clinical reasoning, such as forgoing additional testing due to the convenience of a rapid Al-
generated interpretation. Moreover, the issue of accountability remains unresolved. If an LLM produces an
incorrect diagnosis, it is unclear whether responsibility lies with the clinician or the developers of the tool.
These concerns highlight the urgent need for clear regulatory standards and rigorous validation before such
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models are used in patient care. Clinicians must understand both the limitations of these tools and the
boundaries of their legal and ethical responsibility. Given the rapid advancement of Al models, evolving
ethical concerns will require that regulations and standards be continually reassessed to safeguard patients
and promote effective clinical practice [20].

Recent work has emphasized the potential role of agentic Al systems - autonomous agents that can plan,
reason, and act within defined clinical boundaries - to improve diagnostic workflows in radiology [21]. While
our study focused on general-purpose LLMs operating in passive diagnostic mode, the structured
deployment of agentic Al may eventually address many limitations identified here. For instance, such
systems could incorporate contextual clinical data, manage uncertainty by deferring to human experts, and
engage in multistep diagnostic reasoning. However, realizing this potential will require robust governance,
including privacy safeguards, interoperability standards, continuous performance monitoring, and phase-
wise clinical integration. The radiology community must proactively evaluate and validate these tools to
responsibly harness their benefits while safeguarding patient care.

Limitations

Several limitations should be considered in this study. A key limitation is the lack of transparency regarding
the training data used for each LLM. Without knowing the specific images or datasets on which the models
were trained, it is difficult to interpret the differences in their performance or understand the underlying
factors contributing to their results. Even in authorized medical AI software, most products do not publish
information on training data collection and population characteristics [22]. This uncertainty limits our
ability to evaluate the training data and raises concerns about how well these models will generalize to
different patient populations or clinical settings. LLMs function as black boxes, offering no insight into their
decision-making processes [23]. To effectively compare LLMs to human radiologists, it is essential to
understand the reasoning processes behind each diagnosis and how these processes may differ between
models and humans. Another limitation of this study is that the LLMs were not evaluated in a real clinical
environment. In real clinical practice, CXRs are not interpreted in isolation. Radiologists typically
incorporate a range of complementary clinical information, such as patient history, physical examination
findings, laboratory results, and prior imaging studies, to arrive at a diagnosis. This context is critical
because many radiographic findings are nonspecific and require clinical correlation to determine their
significance. By contrast, the LLMs in this study analyzed the CXR without access to any supporting clinical
data, which does not reflect the way medical imaging is interpreted in real-world settings.

In addition, the dataset used in this study was sourced from a single institution, which introduces more
limitations [24]. Imaging protocols, patient demographics, disease prevalence, and equipment settings can
vary widely across hospitals, regions, and populations. As a result, the performance of these models on this
dataset may not generalize to other clinical environments. This raises concerns about the external validity
and real-world applicability of the findings, especially in more diverse or resource-limited settings where
imaging conditions and patient profiles may differ substantially.

Conclusions

The results of this study show that publicly available LLMs in their current state should not be used to
evaluate pediatric CXRs for pneumonia. Their diagnostic accuracy remains significantly lower than that of
human radiologists, and the low concordance between models indicates limited reliability and internal
consistency in their diagnostic reasoning. If LLMs are to be used in a clinical setting, there must be
extensive oversight by a radiologist in these early stages. Both clinicians and patients must be aware of the
current limitations of these models and avoid relying on them as standalone diagnostic tools. Future work
should focus on advancing Al tools that are specifically designed and trained for radiologic applications.
These models should be developed using diverse and representative datasets that accurately reflect various
patient populations to ensure broad generalizability. As LLMs continue to improve, their integration into
clinical workflows must be accompanied by rigorous oversight to ensure the safe and effective use of these
tools in patient care.
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